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Abstract

We show continuity in parabolic generalized Orlicz-Morrey spaces MΦ,ϕ of commutator of
parabolic nonsingular integral operators. We shall give necessary and sufficient conditions for
the boundedness of the commutator of parabolic nonsingular integral operator on MΦ,ϕ spaces
with BMO functions.
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1 Introduction and main results

It is well-known that the commutator is an important integral operator and it plays a key
role in harmonic analysis. In 1965, Calderón [4, 5] studied a kind of commutators, appearing in
Cauchy integral problems of Lip-line. Let T be a Calderón-Zygmund singular integral operator and
b ∈ BMO(Rn). A celebrated result of Coifman, Rochberg and Weiss [8] states that the commutator
operator [b, T ]f = T (bf)−b Tf is bounded on Lp(Rn) for 1 < p <∞. The commutator of Calderón-
Zygmund operators plays an important role in the study of regularity of solutions of elliptic partial
differential equations of second order (see, for example, [6, 7, 10, 26, 27]).

The classical Morrey spaces were introduced by Morrey [35] to study the local behavior of
solutions to second-order elliptic partial differential equations. Although such spaces allow to
describe local properties of functions better than Lebesgue spaces, they have some unpleasant
issues. It is well known that Morrey spaces are non separable and that the usual classes of nice
functions are not dense in such spaces. Moreover, various Morrey spaces are defined in the process
of study. Guliyev, Mizuhara and Nakai [16, 34, 36] introduced generalized Morrey spaces Mp,ϕ(Rn)
(see, also [17, 18, 45]). Later, Guliyev [18] defined the generalized Morrey spaces Mp,ϕ(Rn) with
normalized norm

‖f‖Mp,ϕ ≡ sup
x∈Rn,r>0

ϕ(x, r)−1 |B(x, r)|−1/p ‖f‖Lp(B(x,r)),

where the function ϕ is a positive measurable function on Rn × (0,∞). Here and everywhere in
the sequel B(x, r) is the ball in Rn of radius r centered at x and |B(x, r)| = vnr

n is its Lebesgue
measure, where vn is the volume of the unit ball in Rn.

The Orlicz space were first introduced by Orlicz in [42, 43] as generalizations of Lebesgue spaces
Lp(Rn). Since then, the theory of Orlicz spaces themselves has been well developed and the spaces
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have been widely used in probability, statistics, potential theory, partial differential equations, as
well as harmonic analysis and some other fields of analysis.

In [11], the generalized Orlicz-Morrey space MΦ,ϕ(Rn) was introduced to unify Orlicz and
generalized Morrey spaces. Other definitions of generalized Orlicz-Morrey spaces can be found in
[37] and [44]. In words of [24], our generalized Orlicz-Morrey space is the third kind and the ones
in [37] and [44] are the first kind and the second kind, respectively. According to the examples in
[15], one can say that the generalized Orlicz-Morrey spaces of the first kind and the second kind are
different and that second kind and third kind are different. However, we do not know the relation
between the first and the second kind.

Note that, Orlicz-Morrey spaces unify Orlicz and generalized Morrey spaces. We extend some
results on generalized Morrey space in the papers [13, 18, 20, 21, 25, 29] to the case of Orlicz-Morrey
space in [11, 14, 22, 23, 24].

As based on the results of [18, 20], the following conditions were introduced in [11] (see, also
[22]) for the boundedness of the singular integral operators on MΦ,ϕ(Rn),∫ ∞

r

(
ess inf
t<s<∞

ϕ1(x, s)

Φ−1
(
s−n

))Φ−1
(
t−n
)dt
t
≤ C ϕ2(x, r),

where C does not depend on x and r.
Consider the half-space Rn+1

+ = Rn × (0,∞). For x = (x′, t) ∈ Rn+1
+ , x = (x′′, xn, t) ∈ Dn+1

+ =

Rn−1×R+×R+, Dn+1
− = Rn−1×R−×R+. In the following, besides the standard parabolic metric

%(x) = max(|x′|, |t|1/2) we use the equivalent one ρ(x) =

(
|x′|2+

√
|x′|4+4t2

2

)1/2

introduced by Fabes

and Riviére in [9]. The induced by it topology consists of ellipsoids (parabolic balls)

Er(x) =

{
y ∈ Rn+1 :

|x′ − y′|2

r2
+
|t− τ |2

r4
< 1

}
, |Er| = Crn+2.

It is easy to see that E1(x) and Sn are the unit ball and the unit sphere, respectively, with respect to
the both metrics and ρ(x). On the other hand, the equivalence between the both parabolic metrics
%(x) and ρ(x) follows by the inclusion: for each Er there exist parabolic cylinders C and C with
measure comparable with rn+2 such that C ⊂ Er ⊂ C. In what follows all estimate obtained over
ellipsoids hold true also over parabolic cylinders and we shall use this property without explicit
references.

Let x̃ = (x′′,−xn, t) be the ”reflected point”. The parabolic nonsingular integral operator R is
defined by (see [2])

Rf(x) =

∫
Dn+1

+

|f(y)|
ρ(x̃− y)n+2

dy. (1.1)

The commutators generated by b ∈ L1
loc(Dn+1

+ ) and the operator R are defined by

[b,R]f(x) =

∫
Dn+1

+

b(x)− b(y)

ρ(x̃− y)n+2
f(y) dy.

The operator |b,R| is defined by

|b,R|f(x) =

∫
Dn+1

+

|b(x)− b(y)|
ρ(x̃− y)n+2

f(y) dy.
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The operator R and its commutator appear in [2] in connection with boundary estimates for
solutions to parabolic equations.

In [40, 41] the author was study the boundedness of the parabolic nonsingular integral operator
R on Orlicz and generalized Orlicz-Morrey spaces, respectively. Therefore, the purpose of this
paper is mainly to study the boundedness of the commutator of parabolic nonsingular integral
operator [b,R] on parabolic generalized Orlicz-Morrey spaces of the third kind MΦ,ϕ(Rn+1

+ ) with
BMO functions.

Therefore, the purpose of this paper is mainly to study the boundedness of the commutators of
parabolic nonsingular operator [b,R] on parabolic generalized Orlicz-Morrey spaces of the third kind
MΦ,ϕ(Dn+1

+ ). We give necessary and sufficient conditions for the boundedness of the commutators

of parabolic nonsingular operator |b,R| on parabolic generalized Orlicz-Morrey spaces MΦ,ϕ(Dn+1
+ ),

respectively.
A function ϕ : (0,∞)→ (0,∞) is said to be almost increasing (resp. almost decreasing) if there

exists a constant C > 0 such that

ϕ(r) ≤ Cϕ(s) (resp. ϕ(r) ≥ Cϕ(s)) for r ≤ s.

For a Young function Φ, we denote by GΦ the set of all decreasing functions ϕ : (0,∞) → (0,∞)
such that t ∈ (0,∞) 7→ Φ−1(t−n−2)ϕ(t)−1 is almost decreasing.

The following results are the fundamental theorems in this paper:

Theorem 1.1. Let b ∈ BMO(Dn+1
+ ), Φ be a Young function with Φ ∈ ∆2 and ϕ1, ϕ2 ∈ ΩΦ.

1. If Φ ∈ ∇2, then the condition∫ ∞
r

(
1 + ln

t

r

)(
ess inf
t<s<∞

ϕ1(x, s)

Φ−1
(
s−n−2

))Φ−1
(
t−n−2

)dt
t
≤ C ϕ2(x, r), (1.2)

where C does not depend on x and r, is sufficient for the boundedness of |b,R| from MΦ,ϕ1(Rn+1
+ )

to MΦ,ϕ2(Rn+1
+ ).

2. If ϕ1 ∈ GΦ, then the condition

ϕ1(x, r) ≤ Cϕ2(x, r), (1.3)

where C does not depend on x and r, is necessary for the boundedness of |b,R| from MΦ,ϕ1(Rn+1
+ )

to MΦ,ϕ2(Rn+1
+ ).

3. If Φ ∈ ∇2 and ϕ1 ∈ GΦ satisfies the regularity type condition∫ ∞
t

ϕ1(r)
dr

r
≤ Cϕ1(t), (1.4)

for all t > 0, where C > 0 does not depend on t, then the condition (1.3) is necessary and sufficient
for the boundedness of |b,R| from MΦ,ϕ1(Rn+1

+ ) to MΦ,ϕ2(Rn+1
+ ).

If we take Φ(t) = tp, p ∈ [1,∞) at Theorem 1.1 we get the following new result for generalized
Morrey spaces.
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Corollary 1.2. Let p ∈ [1,∞), b ∈ BMO(Dn+1
+ ) and ϕ1, ϕ2 ∈ Ωp ≡ Ωtp .

1. If 1 < p <∞, then the condition

∫ ∞
r

ess inf
t<s<∞

ϕ1(s)s
n+2
p

t
n+2
p +1

dt ≤ Cϕ2(r), (1.5)

for all r > 0, where C > 0 does not depend on r, is sufficient for the boundedness of |b,R| from
Mp,ϕ1(Dn+1

+ ) to Mp,ϕ2(Dn+1
+ ).

2. If ϕ1 ∈ Gp, then the condition (1.3) is necessary for the boundedness of |b,R| from
Mp,ϕ1(Dn+1

+ ) to Mp,ϕ2(Dn+1
+ ).

3. If 1 < p <∞ and ϕ1 ∈ Gp satisfies the regularity condition (1.4), then the condition (1.3) is
necessary and sufficient for the boundedness of |b,R| from Mp,ϕ1(Dn+1

+ ) to Mp,ϕ2(Dn+1
+ ).

By A . B we mean that A ≤ CB with some positive constant C independent of appropriate
quantities. If A . B and B . A, we write A ≈ B and say that A and B are equivalent.

2 Definitions and preliminary results

We will use the following statement on the boundedness of the weighted Hardy operator

H∗wg(r) :=

∫ ∞
r

(
1 + ln

t

r

)
g(t)w(t)dt, 0 < t <∞,

where w is a weight.
The following theorem was proved in [19] (see also [28]).

Theorem 2.1. [19] Let v1, v2 and w be positive almost everywhere and measurable functions on
(0,∞). The inequality

ess sup
r>0

v2(r)H∗wg(r) ≤ C ess sup
r>0

v1(r)g(r) (2.1)

holds for some C > 0 for all non-negative and non-decreasing g on (0,∞) if and only if

B := sup
r>0

v2(r)

∫ ∞
r

(
1 + ln

t

r

) w(t)dt

supt<s<∞ v1(s)
<∞. (2.2)

Moreover, the value C = B is the best constant for (2.1).

Remark 2.2. In (2.1) and (2.2) it is assumed that 1
∞ = 0 and 0 · ∞ = 0.

2.1 On Young Functions and Orlicz Spaces

We recall the definition of Young functions.

Definition 2.3. A function Φ : [0,∞) → [0,∞] is called a Young function if Φ is convex, left-
continuous, lim

r→+0
Φ(r) = Φ(0) = 0 and lim

r→∞
Φ(r) =∞.

From the convexity and Φ(0) = 0 it follows that any Young function is increasing. If there exists
s ∈ (0,∞) such that Φ(s) =∞, then Φ(r) =∞ for r ≥ s. The set of Young functions such that

0 < Φ(r) <∞ for 0 < r <∞



Characterizations for the commutator of parabolic nonsingular integral operator ... 101

will be denoted by Y. If Φ ∈ Y, then Φ is absolutely continuous on every closed interval in [0,∞)
and bijective from [0,∞) to itself.

For a Young function Φ and 0 ≤ s ≤ ∞, let

Φ−1(s) = inf{r ≥ 0 : Φ(r) > s}.

If Φ ∈ Y, then Φ−1 is the usual inverse function of Φ. We note that

Φ(Φ−1(r)) ≤ r ≤ Φ−1(Φ(r)) for 0 ≤ r <∞.

It is well known that
r ≤ Φ−1(r)Φ̃−1(r) ≤ 2r for r ≥ 0, (2.3)

where Φ̃(r) is defined by

Φ̃(r) =

{
sup{rs− Φ(s) : s ∈ [0,∞)} , r ∈ [0,∞)

∞ , r =∞.

A Young function Φ is said to satisfy the ∆2-condition, denoted also as Φ ∈ ∆2, if

Φ(2r) ≤ kΦ(r) for r > 0

for some k > 1. If Φ ∈ ∆2, then Φ ∈ Y. A Young function Φ is said to satisfy the ∇2-condition,
denoted also by Φ ∈ ∇2, if

Φ(r) ≤ 1

2k
Φ(kr), r ≥ 0,

for some k > 1.

Definition 2.4. (Orlicz Space). For a Young function Φ, the set

LΦ(Dn+1
+ ) =

{
f ∈ L1

loc(Dn+1
+ ) :

∫
Dn+1

+

Φ(k|f(x)|)dx <∞ for some k > 0

}

is called Orlicz space. If Φ(r) = rp, 1 ≤ p <∞, then LΦ(Dn+1
+ ) = Lp(Dn+1

+ ). If Φ(r) = 0, (0 ≤ r ≤
1) and Φ(r) = ∞, (r > 1), then LΦ(Dn+1

+ ) = L∞(Dn+1
+ ). The space LΦ

loc(Dn+1
+ ) is defined as the

set of all functions f such that fχE ∈ LΦ(Dn+1
+ ) for all balls E ⊂ Dn+1

+ .

LΦ(Dn+1
+ ) is a Banach space with respect to the norm

‖f‖LΦ(Dn+1
+ ) = inf

{
λ > 0 :

∫
Dn+1

+

Φ
( |f(x)|

λ

)
dx ≤ 1

}
.

We note that ∫
Dn+1

+

Φ
( |f(x)|
‖f‖LΦ(Dn+1

+ )

)
dx ≤ 1. (2.4)

The weak Orlicz space

WLΦ(Dn+1
+ ) = {f ∈ L1

loc(Dn+1
+ ) : ‖f‖WLΦ(Dn+1

+ ) < +∞}
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is defined by the norm

‖f‖WLΦ(Dn+1
+ ) = inf

{
λ > 0 : sup

t>0
Φ(t)m

(f
λ
, t
)
≤ 1
}
.

The following lemmas are valid.

Lemma 2.5. [1, 33] Let Φ be a Young function and E a set in Dn+1
+ with finite Lebesgue measure.

Then

‖χE‖WLΦ(Dn+1
+ ) = ‖χE‖LΦ(Dn+1

+ ) =
1

Φ−1 (|E|−1)
.

Lemma 2.6. For a Young function Φ and for all parabolic balls E in Dn+1
+ , the following inequality

is valid
‖f‖L1(E) ≤ 2|E|Φ−1

(
|E|−1

)
‖f‖LΦ(E).

2.2 Parabolic generalized Orlicz-Morrey Space

Various versions of generalized Orlicz-Morrey spaces were introduced in [37], [44] and [11]. We used
the definition of [11] which runs as follows.

We now define parabolic generalized Orlicz-Morrey spaces of the third kind. The parabolic
generalized Orlicz-Morrey space MΦ,ϕ(Dn+1

+ ) of the third kind is defined as the set of all measurable
functions f for which the norm

‖f‖MΦ,ϕ(Dn+1
+ ) ≡ sup

x∈Dn+1
+ , r>0

1

ϕ(x, r)
Φ−1

(
1

|E+(x, r)|

)
‖f‖LΦ(E+(x,r))

is finite, where E+(x, r) = E(x, r) ∩ Dn+1
+ . Also by WMΦ,ϕ(Dn+1

+ ) we denote the weak parabolic

generalized Orlicz-Morrey space of the third kind of all functions f ∈WLΦ
loc(Dn+1

+ ) for which

‖f‖WMΦ,ϕ(Dn+1
+ ) = sup

x∈Dn+1
+ ,r>0

ϕ(x, r)−1Φ−1(|E+(x, r)|−1) ‖f‖WLΦ(E+(x,r)) <∞,

where WLΦ(E+(x, r)) denotes the weak LΦ-space of measurable functions f for which

‖f‖WLΦ(E+(x,r)) ≡ ‖fχE+(x,r)
‖WLΦ(Dn+1

+ ).

Note that MΦ,ϕ(Dn+1
+ ) covers many classical function spaces.

Example 2.7. Let 1 ≤ q ≤ p < ∞ and Φ ∈ ∆2 ∩ ∇2. From the following special cases, we see
that our results will cover the Lebesgue space Lp(Dn+1

+ ), the classical Morrey space Mp
q (Dn+1

+ ), the

generalized Morrey space Mϕ,p(Dn+1
+ ) and the Orlicz space LΦ(Dn+1

+ ) with norm coincidence:

1. If Φ(t) = tp and ϕ(t) = t−
n+2
p , then MΦ,ϕ(Dn+1

+ ) = Lp(Dn+1
+ ) with norm equivalence.

2. If Φ(t) = tq and ϕ(t) = t−
n+2
p , then MΦ,ϕ(Dn+1

+ ), which is denoted by Mp
q (Dn+1

+ ), is the
parabolic Morrey space.

3. If Φ(t) = tp, then MΦ,ϕ(Dn+1
+ ) = Mp,ϕ(Dn+1

+ ) is the parabolic generalized Morrey space
which were discussed in [16], see also [18, 34, 36].
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4. If ϕ(t) = Φ−1(t−n−2), then MΦ,ϕ(Dn+1
+ ) = LΦ(Dn+1

+ ).

Other definitions of generalized Orlicz-Morrey spaces can be found in [15, 37, 38, 39]. Therefore,
our definition of generalized Orlicz-Morrey spaces here is named “third kind”.

In the case ϕ(x, r) =
Φ−1
(
|E(x,r)|−1

)
Φ−1
(
|E(x,r)|−λ/n

) , we get the parabolic Orlicz-Morrey space MΦ,λ(Rn)

from parabolic generalized Orlicz-Morrey space MΦ,ϕ(Rn). We refer to [12, Lemmas 2.8 and 2.9]
for more information about Orlicz-Morrey spaces.

Lemma 2.8. [12, Lemma 2.12] Let Φ be a Young function and ϕ be a positive measurable function
on Rn × (0,∞).

(i) If

sup
t<r<∞

Φ−1(|E(x, r)|−1)

ϕ(x, r)
=∞ for some t > 0 and for all x ∈ Rn, (2.5)

then MΦ,ϕ(Rn) = Θ.

(ii) If

sup
0<r<τ

ϕ(x, r)−1 =∞ for some τ > 0 and for all x ∈ Rn, (2.6)

then MΦ,ϕ(Rn) = Θ.

Remark 2.9. Let Φ be a Young function. We denote by ΩΦ the sets of all positive measurable
functions ϕ on Rn × (0,∞) such that for all t > 0,

sup
x∈Rn

∥∥∥Φ−1(|E(x, r)|−1)

ϕ(x, r)

∥∥∥
L∞(t,∞)

<∞,

and
sup
x∈Rn

∥∥∥ϕ(x, r)−1
∥∥∥
L∞(0,t)

<∞,

respectively. In what follows, keeping in mind Lemma 2.8, we always assume that ϕ ∈ ΩΦ.

The following lemma plays a key role in our main results.

Lemma 2.10. [41] Let E+
0 := E+(x0, r0) a parabolic ball in Dn+1

+ . If ϕ ∈ GΦ, then there exist
C > 0 such that

1

ϕ(r0)
≤ ‖χE+

0
‖MΦ,ϕ(Dn+1

+ ) ≤
C

ϕ(r0)
.

Theorem 2.11. Let Φ any Young function, ϕ1, ϕ2 : Dn+1
+ × R+ → R+ be measurable functions

satisfying (1.2).
i) If Φ ∈ ∆2

⋂
∇2, then it is bounded from MΦ,ϕ1(Dn+1

+ ) in MΦ,ϕ2(Dn+1
+ ) and

‖Rf‖MΦ,ϕ2 (Dn+1
+ ) ≤ C‖f‖MΦ,ϕ1 (Dn+1

+ ). (2.7)

ii) If Φ ∈ ∆2, then it is bounded from MΦ,ϕ1(Dn+1
+ ) to WMΦ,ϕ2(Dn+1

+ ) and

‖Rf‖MΦ,ϕ2 (Dn+1
+ ) ≤ C‖f‖WMΦ,ϕ1 (Dn+1

+ )

with constants independent of f.
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3 Commutator of parabolic nonsingular integrals in the space
MΦ,ϕ(Dn+1

+ )

For any x ∈ Dn+1
+ define x̃ = (x′,−xn) and recall that x0 = (x′, 0). Also define E+

r ≡ E+(x0, r) =

E(x0, r) ∩ Dn+1
+ , 2E+

r = E+(x0, 2r).

We recall the definition of the space of BMO(Dn+1
+ ).

Definition 3.1. Suppose that f ∈ L1
loc(Dn+1

+ ), let

‖f‖∗ = sup
x∈Dn+1

+ ,r>0

1

|E+(x, r)|

∫
E+(x,r)

|f(y)− fE+(x,r)|dy,

where

fE+(x,r) =
1

|E+(x, r)|

∫
E+(x,r)

f(y)dy.

Define
BMO(Dn+1

+ ) = {f ∈ L1
loc(Dn+1

+ ) : ‖f‖∗ <∞}.

Modulo constants, the space BMO(Dn+1
+ ) is a Banach space with respect to the norm ‖ · ‖∗.

Before proving our theorems, we need the following lemmas.

Lemma 3.2. [30] Let b ∈ BMO(Rn). Then, there is a constant C > 0 such that∣∣bE+(x,r) − bE+(x,t)

∣∣ ≤ C‖b‖∗ ln
t

r
for 0 < 2r < t, (3.1)

where C is independent of b, x, r, and t.

Lemma 3.3. [23, 31] Let f ∈ BMO(Dn+1
+ ) and Φ be a Young function with Φ ∈ ∆2, then

‖f‖∗ ≈ sup
x∈Dn+1

+ ,r>0

Φ−1
(
|E+(x, r)|−1

) ∥∥f(·)− fE+(x,r)

∥∥
LΦ(E+(x,r))

. (3.2)

For a function b ∈ BMO define the commutator [b,R]f = bRf − R(bf). The following result
concerning the boundedness of the operator [b,R] on Lp space is known.

Theorem 3.4. [2] Let b ∈ BMO(Dn+1
+ ) and p ∈ (1,∞). Then the commutator operator [b,R] is

bounded on Lp(Dn+1
+ ).

From this result and [27, Theorem 2.7], we have the following boundedness of [b,R] on Lp(Dn+1
+ ).

Theorem 3.5. Let Φ be a Young function with Φ ∈ ∆2

⋂
∇2 and b ∈ BMO(Dn+1

+ ). Then the

commutator operator [b,R] is bounded on LΦ(Dn+1
+ ).

Our aim is to show boundedness of [b,R] in MΦ,ϕ(Dn+1
+ ).
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Lemma 3.6. Let Φ be a Young function with Φ ∈ ∆2

⋂
∇2 and b ∈ BMO(Dn+1

+ ). Suppose that

for all f ∈ LΦ
loc(Dn+1

+ ) and r > 0 holds∫ ∞
1

(
1 + ln

t

r

)
‖f‖LΦ(E+(x0,t)) Φ−1

(
t−n−2

) dt
t
<∞. (3.3)

Then

‖[b,R]f‖LΦ(E+(x0,r)) ≤
C

Φ−1
(
r−n−2

) ∫ ∞
2r

(
1 + ln

t

r

)
‖f‖LΦ(E+(x0,t)) Φ−1

(
t−n−2

) dt
t
, (3.4)

where the constants are independent of x0, r and f .

Proof. Denote by E+
r = E+(x0, r), E+

t = E+(x0, t) and for any f ∈ LΦ
loc(Dn+1

+ ) write f = f1 + f2

with f1 = fχ2E+
r

and f2 = fχ(2E+
r )c . Because of the Φ-boundedness of the operator [b,R] (see

Theorem 3.5) and f1 ∈ LΦ(Dn+1
+ ) we have

‖[b,R]f1‖LΦ(E+
r ) ≤ ‖[b,R]f1‖LΦ(Dn+1

+ ) . ‖b‖∗‖f1‖LΦ(Dn+1
+ ) = ‖b‖∗‖f‖LΦ(2E+

r ).

It is easy to see that for arbitrary points x ∈ E+
r and y ∈ (2E+

r )c it holds

1

2
ρ(x0 − y) ≤ ρ(x̃− y) ≤ 3

2
ρ(x0 − y). (3.5)

Then ∥∥∥[b,R]f2(x)
∥∥∥
LΦ(E+

r )
.
∫

(2E+
r )c

|b(y)− b(x)|
ρ(x0 − y)n+2

|f(y)|dy

≤
∥∥∥ ∫

(2E+
r )c

|b(y)− bE+
r
|

ρ(x0 − y)n+2
|f(y)| dy

∥∥∥
LΦ(E+

r )
+
∥∥∥∫

(2E+
r )c

|b(x)− bE+
r
|

ρ(x0 − y)n+2
|f(y)| dy

∥∥∥
LΦ(E+

r )

= I1 + I2.

We estimate I1 as follows

I1 .
1

Φ−1
(
r−n−2

) ∫
(2E+

r )c

|b(y)− bE+
r
||f(y)|

ρ(x0 − y)n+2
dy

=
1

Φ−1
(
r−n−2

) ∫
(2E+

r )c
|b(y)− bE+

r
||f(y)|

∫ ∞
ρ(x0−y)

dt

tn+3
dy

=
1

Φ−1
(
r−n−2

) ∫ ∞
2r

∫
2r≤ρ(x0−y)≤t

|b(y)− bE+
r
||f(y)|dy dt

tn+3

.
1

Φ−1
(
r−n−2

) ∫ ∞
2r

∫
E+
t

|b(y)− bE+
r
||f(y)|dy dt

tn+3
.
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Applying Hölder’s inequality, Lemma 3.2 and (3.1), we get

I1 .
( 1

Φ−1
(
r−n−2

) ∫ ∞
2r

∫
E+
t

|b(y)− bE+
t
||f(y)|dy dt

tn+3

+
1

Φ−1
(
r−n−2

) ∫ ∞
2r

|bE+
r
− bE+

t
|
∫
E+
t

|f(y)|dy dt

tn+3

)
.
( 1

Φ−1
(
r−n−2

) ∫ ∞
2r

∥∥∥b(·)− bE+
t

∥∥∥
LΦ̃(E+

t )
‖f‖LΦ(E+

t )

dt

tn+3

+
1

Φ−1
(
r−n−2

) ∫ ∞
2r

|bE+
r
− bE+

t
|‖f‖LΦ(E+

t ) Φ−1
(
t−n−2

)dt
t

)
.

‖b‖∗
Φ−1

(
r−n−2

) ∫ ∞
2r

(
1 + ln

t

r

)
‖f‖LΦ(E+

t ) Φ−1
(
t−n−2

)dt
t
.

In order to estimate I2 note that

I2 =
∥∥∥b(·)− bE+

r

∥∥∥
LΦ(E+

r )

∫
(2E+

r )c

|f(y)|
ρ(x0 − y)n+2

dy.

By Lemma 3.2 and applying the Fubini theorem we get

I2 .
‖b‖∗

Φ−1
(
r−n−2

) ∫
(2E+

r )c

|f(y)|
ρ(x0 − y)n+2

dy

≤ ‖b‖∗
Φ−1

(
r−n−2

) ∫
(2E+

r )c
|f(y)|dy

∫ ∞
ρ(x0−y)

dt

tn+3

.
‖b‖∗

Φ−1
(
r−n−2

) ∫ ∞
2r

(∫
E+
t

|f(y)|dy

)
dt

tn+3
.

Applying the Hölder’s inequality (see, Lemma 2.6), we get∫
(2E+

r )c

|f(y)|
ρ(x0 − y)n+2

dy .
∫ ∞

2r

‖f‖LΦ(E+
t )‖1‖LΦ̃(E+

t )

dt

tn+3

=

∫ ∞
2r

‖f‖LΦ(E+
t )

1

Φ̃−1(|E+
t |−1)

dt

tn+3
≈
∫ ∞

2r

‖f‖LΦ(E+
t )Φ

−1
(
t−n−2

)dt
t
.

(3.6)

Direct calculations give

‖[b,R]f2‖LΦ(E+
r ) .

‖b‖∗
Φ−1

(
r−n−2

) ∫ ∞
2r

‖f‖LΦ(E+
t ) Φ−1

(
t−n−2

) dt
t

(3.7)

and the last estimate holds for all f ∈ LΦ(Dn+1
+ ) satisfying (3.3). Thus

‖Rf‖LΦ(E+
r ) . ‖b‖∗ ‖f‖LΦ(2E+

r )

+
‖b‖∗

Φ−1
(
r−n−2

) ∫ ∞
2r

(
1 + ln

t

r

)
‖f‖LΦ(E+

t ) Φ−1
(
t−n−2

) dt
t
. (3.8)
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On the other hand,

‖f‖LΦ(2Er) =
C

Φ−1
(
r−n−2

) ‖f‖LΦ(2Er)

∫ ∞
2r

Φ−1
(
t−n−2

) dt
t

≤ C

Φ−1
(
r−n−2

) ∫ ∞
2r

‖f‖LΦ(E+
t ) Φ−1

(
t−n−2

) dt
t

(3.9)

which unified with (3.8) gives (3.4).
q.e.d.

For proving our main results, we need the following estimate.

Lemma 3.7. If b ∈ L1
loc(Dn+1

+ ) and E+
0 := E+(x0, r0), then

|b(x)− bE+
0
| ≤ C|b,R|χE+

0
(x)

for every x ∈ E+
0 , where bE+

0
= 1
|E+

0 |

∫
E+

0
b(y)dy.

Proof. If x, y ∈ E+
0 , then ρ(x̃− y) ≤ ρ(x̃− x0) + ρ(y − x0) < 2r0. We get Cr−n−2

0 ≤ ρ(x̃− y)−n−2.
Therefore

|b,R|χE+
0

(x) =

∫
E+

0

|b(x)− b(y)|ρ(x̃− y)−n−2dy ≥ Cr−n−2
0

∫
E+

0

|b(x)− b(y)|dy

≥ Cr−n−2
0

∣∣∣∣∣
∫
E+

0

(b(x)− b(y))dy

∣∣∣∣∣ = C|b(x)− bE+
0
|.

q.e.d.

Theorem 3.8. Let Φ be a Young function with Φ ∈ ∆2

⋂
∇2, b ∈ BMO(Dn+1

+ ) and ϕ1, ϕ2 :

Dn+1
+ × R+ → R+ be measurable functions satisfying (1.2). Then the commutator operator [b,R]

is bounded from MΦ,ϕ1(Dn+1
+ ) in MΦ,ϕ2(Dn+1

+ ) and

‖[b,R]f‖MΦ,ϕ2 (Dn+1
+ ) ≤ C‖b‖∗ ‖f‖MΦ,ϕ1 (Dn+1

+ ) (3.10)

with constants independent of f.

Proof. By Lemma 3.6 we have

‖[b,R]f‖MΦ,ϕ2 (Dn+1
+ ) ≤ C‖b‖∗ sup

x0, r>0

ϕ2(x0, r)−1

∫ ∞
r

(
1 + ln

t

r

)
‖f‖LΦ(E+(x0,t)) Φ−1

(
t−n−2

) dt
t
.

Applying the Theorem 2.1 to the above integral with

w(r) = Φ−1
(
r−n−2

)
, v2(x0, r) = ϕ2(x0, r)−1, v1(x0, r) = ϕ1(x0, r)−1 Φ−1

(
r−n−2

)
,

g(x0, r) = ‖f‖LΦ(E+(x0,r)), H∗wg(x0, r) =

∫ ∞
r

(
1 + ln

t

r

)
‖f‖LΦ(E+(x0,t))w(t)dt



108 M. N. Omarova

where the condition (2.2) is equivalent to (1.2) we get

‖[b,R]f‖MΦ,ϕ2 (Dn+1
+ ) . ‖b‖∗ sup

x∈Dn+1
+ , r>0

ϕ1(x0, r)−1 Φ−1
(
r−n−2

)
‖f‖LΦ(E+(x0,r))

= ‖b‖∗ ‖f‖MΦ,ϕ1 (Dn+1
+ ).

q.e.d.

Proof of Theorem 1.1. The first part of the theorem follows from Lemma 3.6 and Theorem
2.11. We shall now prove the second part. Let E+

0 = E+(x0, r0) and x ∈ E+
0 . It is easy to see that

RχE+
0

(x) = 1 for every x ∈ E+
0 . Therefore, by Lemmas 2.5 and 3.7

1 = Φ−1(w(E+
0 )−1)‖RχE+

0
‖LΦ(E+

0 ) ≤ ϕ2(E+
0 )‖RχE+

0
‖MΦ,ϕ2

≤ Cϕ2(E+
0 )‖χE+

0
‖MΦ,ϕ1 ≤ C

ϕ2(E+
0 )

ϕ1(E+
0 )
.

Since this is true for every E+
0 , we are done.

The third statement of the theorem follows from the other statements of the theorem.
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